Visual Alignment

Tom Trippe and Peter Hamel August 13, 1999

Intro to Visual Alignment Program (visualign)

- Purpose
- Event reconstruction
- Track selection
- Alignment procedure
- Displaying residuals at step
- Alignment step options

Purpose

- Visualize alignment problems
 - 3D residuals
 - Display selected residuals
- Develop alignment strategies graphically
 - Selection of alignment objects / parameters
 - Selection of tracks to use
 - Specification of sequence of such alignments
- Record strategy for reuse and modification
- Align all DØ detectors

Event Reconstruction

- Load Mutable Offline Geometry
- Must redo Reco after each alignment step
- Local clusters do not need redo
- Repeatedly run D0Reco with I,O files?
- Save stripped down events in memory?
- Call D0Reco from alignment program?

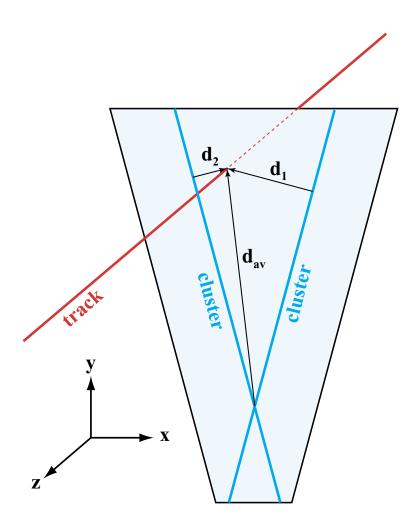
Track Selection

- Tracks with $p_t > say 5 \text{ GeV/c}$ for barrel
- Tracks with high p_z for disks (minbias?)
- Might use several samples at once.
- Do we need special triggers?
- Multiple tracks vertexed to interaction?

Alignment Procedure

- Reconstruct events
- Select objects / geometry transforms
- Select components of transforms
- Select track sample(s)
- Display residuals
- Try step, accept or reject it
- Repeat above until alignment done

Displaying Residuals at Step


- Display 3D vectors (with error ellipse?)
- Cut on significance, e.g. 3 sigma from zero
- At each alignment step:
 - Display selected objects / transforms
 - Display selected track sample(s)
 - Display related residual field
 - Display χ^2 , Rot, Trans for each transform

Alignment Step Options

- Try this alignment step
 - Rot, Trans to obtain minimum χ^2
 - Display Residuals after this step
 - Either: Reject this step
 - Back up to selections for this step
 - Or: Accept this step
 - Log selections for this step
 - Begin selections for next step
- Manually move object; view χ^2 , Rot, Trans

Progress on visualign

- 3D residual concept tested
- Some Classes written, in CVS
 - Residual
 - SMTResidual (prototype XXXResidual)
 - ResidualField written
- Trying to read events
- Immediate goal: Display some residuals
- Longer term goal: Align 10% test

The $\chi^2(\mathbf{Q}, \mathbf{h})$ that \mathbf{d}_i' , the residuals after rotation \mathbf{R} ($\mathbf{Q} = \mathbf{R} - \mathbf{1}$) and translation \mathbf{h} , are equal to zero within their error matrices \mathbf{E}_i is

$$\chi^{2}(\mathbf{Q}, \mathbf{h}) = \sum_{i} \mathbf{d}_{i}^{\prime \dagger} \mathbf{E}_{i}^{-1} \mathbf{d}_{i}^{\prime},$$
$$\mathbf{d}_{i}^{\prime} = \mathbf{d}_{i} - \mathbf{Q} \mathbf{s}_{i} - \mathbf{h},$$
$$\mathbf{Q} = \mathbf{R} - \mathbf{1}.$$

Differentiating χ^2 with respect to the components of **Q** and **h** and setting the differentials equal to zero yields six equations in the components of **Q** and **h**:

$$\begin{split} \sum_{m=1}^{3} a_{jm} \theta_{m} + \sum_{n=1}^{3} b_{jn} h_{n} &= c_{j}, \quad \text{j=1,3,} \\ \sum_{m=1}^{3} d_{jm} \theta_{m} + \sum_{n=1}^{3} e_{jn} h_{n} &= f_{j}, \quad \text{j=1,3,} \\ a_{jm} &= \sum_{i} \mathbf{s}_{i}^{\dagger} \mathbf{Q}_{j}^{\dagger} \mathbf{E}_{i}^{-1} \mathbf{Q}_{m} \mathbf{s}_{i}, \quad b_{jn} &= \sum_{i} \mathbf{s}_{i}^{\dagger} \mathbf{Q}_{j}^{\dagger} \mathbf{E}_{i}^{-1} \mathbf{u}_{n}, \quad c_{j} &= \sum_{i} \mathbf{s}_{i}^{\dagger} \mathbf{Q}_{j}^{\dagger} \mathbf{E}_{i}^{-1} \mathbf{d}_{i}, \\ d_{jm} &= \sum_{i} \mathbf{u}_{j}^{\dagger} \mathbf{E}_{i}^{-1} \mathbf{Q}_{m} \mathbf{s}_{i}, \quad e_{jn} &= \sum_{i} \mathbf{u}_{j}^{\dagger} \mathbf{E}_{i}^{-1} \mathbf{u}_{n}, \quad f_{j} &= \sum_{i} \mathbf{u}_{j}^{\dagger} \mathbf{E}_{i}^{-1} \mathbf{d}_{i}. \end{split}$$

Assuming no rotation, the translation vector \mathbf{h} which minimizes χ^2 is

$$\mathbf{h} = \left(\sum_{i} \mathbf{E}_{i}^{-1}\right)^{-1} \sum_{i} \mathbf{E}_{i}^{-1} \mathbf{d}_{i},$$

which is the weighted average of the residuals, where the weighting includes the effects of correlations.

 $\mathbf{d_i}$ is residual $\mathbf{t_i}$ is track $\mathbf{s_i}$ is cluster

$$d_{i} = t_{i} - s_{i}$$

$$s'_{i} = Rs_{i} + h$$

$$d'_{i} = t_{i} - s'_{i}$$

$$= d_{i} + s_{i} - s'_{i}$$

$$= d_{i} + s_{i} - Rs_{i} - h$$

$$= d_{i} - (R - 1)s_{i} - h$$

$$= d_{i} - Qs_{i} - h$$